. ON METRIZATION AND DISCRETE COLLECTIONS OF POiNT SETS
D. Reginald Traylor

Recently, Bing [2] has formally raised the éuestion as to whether the
existence of a nommetrizable normal Moore space implies that there is a
normal Moore spaée which contains a discrete subset with respect to which
the séace is not collectionwise normal. Following the convention of Bing, -
such a space is called a Counterexample of Typé D. Already known is that
the.existence of a normal, lécaily compact, nonmetrizable Moore space
implies the existence of a Counterexample of Type D [lé, Theorem 4], and
fhat the existence of a normal, separable, nonmetrizable Moore space
give the same implication [2, Theoremgél.

The primary purpose of this paper is to .prove that there is a
Counterexample of Type D provided that there exists a normal, locally sep-
areble, nonmetrizable Moore space. The results of Theorem 1 are similar

,'to those established by Grace [5], except that the included fesults are
éast in the setting of a Moore space and offer hyﬁotheses which are stated
in terms of discrete collections of point sets.

A Moore space is one which satisfies the first three parts of Axiom 1
of [11]. TFor other definitions and results related to the question of
metrization of normal Moore.spaces, refer to [1], [31, [4]; [el, 71, [8]{

(91, [101, [13], [14], and [15].

Theorem 1. Suppose that S is a Moore space and there exists an open covering
H of S such that if G is a discrete collection of point sets refining H, then

the boundary of G* is (stroggly) screenable. Then S is (sfrongiy)’sgyggnable.
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.Préof. vSuppoSe that H is an open covering of § and, by [1, Theorem 9],
Hl’ HZ’ H3, ee. is a SEqﬁénce of discrete collections of closed sets such

that, for each i, Hi refines H,'Hii contains'Hi, and Z.Hﬁ = §. For each

1

i and each element h of Hy, let g denote the interior of h if h contains
an open subset. For each i, denote by Vi the collection to which v be-

longs if and only if there exists an element h of Hi such that v = =

Then Vi'is a discrete collection of open sets. Denote by Vi the collection’

to which the set v belongs if and only if there exists an element h of Hi

such that v is the boundary of h. It follows that V; is a discrete collec-

tion of closed sets, Vi* is the boundary of Hi, and Vi + Vi#'contains H?.

From the hypothesis of the theorem, it follows that Vi* is (strongly)

screenable. Thus’\there_gxists a sequence Uil, Uiz, «o. of (discrete)

collections of mutually exclusive open sets in S such that Vi* is covered

by Z Ui and each U
3.3

.{Ui } ;ii 5:; give rise to a sequence of collections of open sets sat-
j 3 . .

isfying the definition of (strong) screenability.

is a refinement of H. The sequences'{v.}ff’ and
ij i7i=1

. Theorem 2. Suppose that S is a Moore space which is locally separable,

nbrmal, and nonmetrizable. Then S is a Counterexample of Type D.

_Proof. Denote By H aﬁ open covering of S such that each element of H is
separable and by G a discrete collection of point sets such that G refines
H. 1If § is not a Counterexample of Type D, then S is collectionwise
normal with respect to each uncountable discrete set. It follows that if g
is an element of G and M is an uncountable subset of E; then M is not dis-

cvete since g is a subset of a separable element of H. Then each uncountable
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’sub;ét of gﬂhas a limit point and by [11, Page 9, Theorem 22], g.isAcoﬁpiéfely
séparable., | | | | | |

Since G is discrete, thé boundary of G* is the sum of the boundaries of
the elements of G. 1If g is an element of G, Let B(g) denote the boundary
of g. To prove that the boundary of G* is sc;eenable, let V denofe a
collectionbof open seté co&ering‘S and denqte by U a collec£ion of'open sets
covering S such that no element 6f 8) intersecfs two elements of G. Since
B(g) is completely separable, there exists a collection Hg of open sets such
that ﬁg is countable, Hg covers B(g), and if P is a point of B(g) and 0 is
an open set containing P, then some element of Hg contains P and is-a
subsét of 0. Now denote by Ml a point set gqch that, for each element g of

G, M is a subset of Z B(g). It

1
. ) ‘g€G
follows that Ml is a discrete point set and, since S is collectionwise normal

1 contains exactly onme point of B(g) and M

with respect to each such set, there is a collection WM of mutually exclusive
: 1
domains such that W,, refines U and W,, covers M,. If P is a point of M_ - B(g)
Ml Ml . 1 1
‘for some g, then some element hP of Hg contains P and is a subset of that ele-

ment of W, which contains P. Denote by V. the collection to which v belongs

My

if and only if there is a point P of M

1

1 B(g) such that v is hP. Next, let

MZ denote a point set such that, for each element g of G, M, contains exactly

2

2 is a subset of z B(g).
geG
is a discrete set and that there exists a

one point of B(g)—V.* (if that set exists) and M

1

As with Ml, it follows that M2

collection V2 of mutually exclusive open sets such that V2 covers MZ’ each

element of V2 is an element of Hé for some g of’G, and no element of Vl

is an element of V2' This process continued indefinitely gives rise to a

countable sequence (not neccessarily simply infinite, though the construction

v such

could have been defined to give such a sequence) Vl’ V2, sees Voo een



- that each-Vd is a éollection of mutually exclusive.demains which refines
U and it is clear that the sum of the'elemepts of the collections'ﬁf the
'seque;lce covers the boundary of G*. That the sequence Ais only countable
follows quickly from the fact that Hg is cpuntable for each g.
ThiS‘has;establiShed that.the boundary of G* is screenable and, by

Theorem 1, and [1, Theorem 8], S must be metrizable and a contradiction is

reached to the assumption that S is not a Counterexample of Type D.

The statement that S satisfies a Souslin property locally means that
if P is a point of S then there exists an open set 0 containing P such

that 0 does not contain uncountably many mutually exclusive domains.

Theorem 3. If S is a normal, nonmetrizable Moore space which satisfies a

Souslin property locally, then S is a Counterexample of Type D.

" Proof. Consider an open covering of S such that each element of that covering
does not contain uncountably many mutually exclusive domains and let G be any
discrete collectioh of point séts”refining'thét ofen-cover. It follows as in
Theorem 2 that the closure of each element of G must be completely separabie
and this allows applicaﬁion of Theorem 1 to éémpleté the argument as in thé

preceding theorem.
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